TLC27M2A - LinCMOS™ Precision Dual Operational Amplifier

Updated : 2020-01-09 14:21:52
Description

The TLC27M2 and TLC27M7 dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching that of general-purpose bipolar devices.These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.

The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications which have previously been reserved for general-purpose bipolar products, but with only a fraction of the power consumption. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC27M2 (10 mV) to the high-precision TLC27M7 (500 µV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.

In general, many features associated with bipolar technology are available on LinCMOS operational amplifiers, without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC27M2 and TLC27M7. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.

A wide range of packaging options is available, including small-outline and chip-carrier versions for high-density system applications.

The device inputs and outputs are designed to withstand –100-mA surge currents without sustaining latch-up.

The TLC27M2 and TLC27M7 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.

The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from –40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of –55°C to 125°C.

Products containing the "TLC27M2A" keyword are: TLC27M2AC , TLC27M2ACD , TLC27M2ACD1 , TLC27M2ACD3 , TLC27M2ACDG4 , TLC27M2ACDR , TLC27M2ACDR , TLC27M2ACDRG4 , TLC27M2ACDRG4 , TLC27M2ACJGP4 , TLC27M2ACP , TLC27M2ACPE4 , TLC27M2ACPE4 , TLC27M2ACPG4 , TLC27M2ACPP1 , TLC27M2ACPP3 , TLC27M2AID , TLC27M2AID , TLC27M2AID1 , TLC27M2AIDG4
Features

  • Trimmed Offset Voltage:
    • TLC27M7...500 µV Max at 25°C,
      VDD = 5 V
  • Input Offset Voltage Drift...Typically
    0.1 µV/Month, Including the First 30 Days
  • Wide Range of Supply Voltages Over
    Specified Temperature Ranges:
    • 0°C to 70°C...3 V to 16 V
    • –40°C to 85°C...4 V to 16 V
    • –55°C to 125°C...4 V to 16 V
  • Single-Supply Operation
  • Common-Mode Input Voltage Range Extends Below
    the Negative Rail (C-Suffix, I-Suffix Types)
  • Low Noise...Typically 32 nV/ Hz at f = 1 kHz
  • Low Power...Typically 2.1 mW at 25°C, VDD = 5 V
  • Output Voltage Range Includes Negative Rail
  • High Input impedance...1012 Typ
  • ESD-Protection Circuitry
  • Small-Outline Package Option Also Available in Tape and Reel
  • Designed-In Latch-Up Immunity

LinCMOS is a trademark of Texas Instruments Incorporated.
All other trademarks are the property of their respective owners.

Parametrics
StatusACTIVE
Approx. price0.38 | 1ku
Number of channels2
Total Supply Voltage3
Rail-to-railIn to V-
GBW0.525
Slew Rate0.46
Package GroupPDIP|8
Vos (offset voltage @ 25 C)5
Iq per channel0.105
Vn at 1 kHz32
RatingCatalog
Operating temperature range-40 to 85
Package size: mm2:W x L (PKG)See datasheet (PDIP)
Offset drift1.7
FeaturesN/A
Input bias current60
CMRR91
Output current8
ArchitectureCMOS
Radiation, TID
Radiation, SEL
Input common mode headroom (to negative supply)-0.3
Input common mode headroom (to positive supply)-1.0
Output swing headroom (to negative supply)0.03
Output swing headroom (to positive supply)-1.1