The TLC272 and TLC277 precision dual operational amplifiers combine a wide range of input offset voltage grades with low offset voltage drift, high input impedance, low noise, and speeds approaching those of general-purpose BiFET devices.
These devices use Texas Instruments silicon-gate LinCMOS technology, which provides offset voltage stability far exceeding the stability available with conventional metal-gate processes.
The extremely high input impedance, low bias currents, and high slew rates make these cost-effective devices ideal for applications previously reserved for BiFET and NFET products. Four offset voltage grades are available (C-suffix and I-suffix types), ranging from the low-cost TLC272 (10 mV) to the high-precision TLC277 (500 uV). These advantages, in combination with good common-mode rejection and supply voltage rejection, make these devices a good choice for new state-of-the-art designs as well as for upgrading existing designs.
In general, many features associated with bipolar technology are available on LinCMOS operational amplifiers without the power penalties of bipolar technology. General applications such as transducer interfacing, analog calculations, amplifier blocks, active filters, and signal buffering are easily designed with the TLC272 and TLC277. The devices also exhibit low voltage single-supply operation, making them ideally suited for remote and inaccessible battery-powered applications. The common-mode input voltage range includes the negative rail.
A wide range of packaging options is available, including small-outline and chip carrier versions for high-density system applications.
The device inputs and outputs are designed to withstand 100-mA surge currents without sustaining latch-up.
The TLC272 and TLC277 incorporate internal ESD-protection circuits that prevent functional failures at voltages up to 2000 V as tested under MIL-STD-883C, Method 3015.2; however, care should be exercised in handling these devices as exposure to ESD may result in the degradation of the device parametric performance.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized for operation from 40°C to 85°C. The M-suffix devices are characterized for operation over the full military temperature range of 55°C to 125°C.
Products containing the "TLC277" keyword are: TLC277 , TLC277/TLC277IDR , TLC277C , TLC277CD , TLC277CDG4 , TLC277CDR , TLC277CDR , TLC277CDRG4 , TLC277CDRG4 , TLC277CP , TLC277CP , TLC277CP-TLC277 , TLC277CP/PB , TLC277CPE4 , TLC277CPG4 , TLC277CPS , TLC277CPS , TLC277CPSG4 , TLC277CPSLE , TLC277CPSRLinCMOS is a trademark of Texas Instruments.
Status | ACTIVE |
Number of channels | 2 |
Total Supply Voltage | 3 |
Vos (offset voltage @ 25 C) | 0.5 |
GBW | 0.32 |
Slew Rate | 3.6 |
Rail-to-rail | In to V- |
Offset drift | 1.8 |
Iq per channel | 0.7 |
Vn at 1 kHz | 25 |
CMRR | 80 |
Rating | Catalog |
Operating temperature range | -40 to 85 |
Package Group | PDIP|8 |
Approx. price | 0.84 | 1ku |
Package size: mm2:W x L (PKG) | See datasheet (PDIP) |
Input bias current | 60 |
Output current | 10 |
Features | N/A |
Architecture | CMOS |
Input common mode headroom (to negative supply) | -0.3 |
Input common mode headroom (to positive supply) | -0.8 |
Output swing headroom (to negative supply) | 0.03 |
Output swing headroom (to positive supply) | -1.2 |